Cellular Transport Notes

Cell Membranes Review

- All cells have a cell membrane
- 2. Functions:
 - a. Controls what enters and exits the cell to maintain
 - b. Provides protection and support for the cell

TEM picture of a real cell membrane.

3. Structure of cell membrane

Lipid Bilayer - 2 layers of phospholipids

- a. Phosphate head is *polar* (hydrophilic)
- b. Fatty acid tails *non-polar* (hydrophobic)
- c. Proteins channels embedded in membrane

Cell Membranes review (continued)

- 4. Cell membranes have pores (holes) in it
 - a. **Selectively permeable**: Allows some molecules in and keeps other molecules out
 - b. The structure helps it be selective!

Passive Transport

- cell uses no energy
- molecules move <u>randomly</u>
- Molecules spread out from an area of <u>high</u> concentration to an area of low concentration. (High→Low)
- Three types:
 - 1. Diffusion
 - 2. **Facilitative Diffusion** diffusion with the help of transport proteins
 - 3. Osmosis diffusion of water

Passive Transport: 1. <u>Diffusion</u>

- 1. Diffusion: random movement of particles from an area of high concentration to an area of low concentration.

 (High to Low)
- Diffusion continues until all molecules are evenly spaced (equilibrium is reached)

Note: molecules will still move around but stay spread out.

Simple Diffusion Animation

2. Facilitated Diffusion

2. Facilitated diffusion:
diffusion of specific particles
through transport
proteins found in the
membrane

- a. Transport Proteins are <u>specific</u> – they "select" only certain molecules to cross the membrane
- Transports larger or charged molecules

Facilitated diffusion (Channel Protein)

Diffusion (Lipid Bilayer)

Passive Transport: 2. Facilitated Diffusion Glucose molecules Cellular Transport From aHigh Concentration Cell Membrane Low Concentration Transport Protein Sco to Section:

Passive Transport: 3. **Osmosis**

Osmosis animation

- 3.Osmosis: diffusion of water through a selectively permeable membrane
- Water seeks equilibrium.
- Water travels to areas of high solute concentration

- •Water moves freely through pores.
- •Solute (green) to large to move across.

Hypotonic: The solution has a lower concentration of solutes and a higher concentration of water than inside the cell. (Low solute; High water)

Result: Water moves from the solution to inside the cell): Cell Swells and bursts open (cytolysis)!

morak Hypertonic Solution

Osmosis
 Animations for isotonic, hypertonic, and hypotonic solutions

Hypertonic: The solution has a higher concentration of solutes and a lower concentration of water than inside the cell. (High solute; Low water)

Result: Water moves from inside the cell into the solution: Cell shrinks (*Plasmolysis*)!

Some Isotonic Solution

Osmosis
 Animations for isotonic, hypertonic, and hypotonic solutions

Isotonic: The concentration of solutes in the solution is equal to the concentration of solutes inside the cell.

Result: Water moves equally in both directions and the cell remains same size! (Dynamic Equilibrium)

What type of solution are these cells in?

Active Transport

- •cell uses energy
- actively moves molecules to where they are needed
- •Movement from an area of low concentration to an area of high concentration (Low → High)
- •Three Types:
 - Protein Pumps
 - Endocytosis
 - Exocytosis

Types of Active Transport

Sodium
Potassium Pumps
(Active Transport
using proteins)

1. Protein Pumps

-transport proteins that require energy to do work

•Example: Sodium / Potassium Pumps are important in nerve responses.

Protein changes shape to move molecules: this requires energy!

Types of Active Transport

- 2. Endocytosis: taking bulky material into a cell
 - Uses energy
 - Cell membrane in-folds around food particle
 - "cell eating"
 - forms food vacuole & digests food
 - This is how white blood cells eat bacteria!

Types of Active Transport

- 3. Exocytosis: Forces material out of cell in bulk
 - membrane surrounding the material fuses with cell membrane
 - Cell changes shape requires energy
 - Ex: Hormones or wastes released from cell

Endocytosis & Exocytosis animations

